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The t i t le of this paper is also that of a lecture and a journal paper wr i t ten by the present 
author 25 years ago (Bradshaw 1972). Note that "understanding"  must come before 
" 'pred ic t ion"- -a l though the order is reversed in the discussion be low- -because  we must 
know what  level of understanding is needed by currently affordable prediction methods. 
The present paper considers the question, "What  progress has the human race made in 
the subject in the last quarter-century?" As always on these occasions, progress in some 
directions seems to have been slow, whi le  other branches concerning the subject have 
advanced- -or  even come into b e i n g - - w i t h  amazing rapidity. This paper deals mainly wi th  
momentum transfer, because (1) we must calculate the velocity field before being able to 
predict heat or contaminant transfer; and (2) momentum and thermal internal energy are 
transported by turbulence in roughly the same way. © 1997 by Elsevier Science Inc. 
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I n t r o d u c t i o n  

Basic physics of turbulence 

Turbulence is the most complicated form of fluid motion, and 
the most common. Research scientists can treat it as a fascinat- 
ing phenomenon, while engineers regard it sometimes as an 
enemy, sometimes as a friend. The basic mechanism of turbu- 
lence is "vortex stretching." Turbulence is essentially three-di- 
mensional (3-D), containing all three components of vorticity: as 
with any vorticity field, it can be thought of as composed of 
distributed vortex lines analogous to magnetic lines of force. It is 
deterministic, not completely random, but the motion is so com- 
plicated that the tools used in the study of random processes are 
useful in study turbulence. The interaction between the three 
components of vorticity leads to concentration of most of the 
vorticity into vortex tubes (the finite-thickness version of the 
vortex lines mentioned above, effectively real viscous vortices) 
and vortex slabs, which are the finite-thickness version of vortex 
sheets (surfaces occupied by nearly parallel vortex lines): 
Kelvin-Helmholtz instability, such as that found in transition 
from laminar to turbulent flow in a mixing layer, tends to make 
slabs roll up into vortex tubes connected by thinner slabs. (Tran- 
sition and its prediction are not discussed in detail here; but note 
that breakdown to turbulence requires a 3-D perturbation, typi- 
cally of a two-dimensional (2-D) instability mode such as 
Kelvin-Helmholz. Thus, the distributed vortex-line model is ac- 
tually a usable approximation to the truth (e.g., Vincent and 
Meneguzzi 1994), rather than merely a mathematical abstraction 
to represent a smoothly varying vorticity field. The induced 
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velocity field of all the vortex tubes leads, on the average, to the 
stretching of individual tubes, reducing their diameters: then, 
conservation of angular momentum implies that, as the diameter 
decreases, the rate of rotation (the vorticity) and the rotational 
kinetic energy both increase; that is, vortex stretching transfers 
kinetic energy from large wavelengths (vortex tube diameters) to 
small wavelengths--the "energy cascade." The start of the pro- 
cess is most turbulent flows is distortion of the larger-scale 
motion by the mean rate of strain (e.g., the mean shear in a 
shear layer), which transfers kinetic energy from the mean flow 
to the turbulence. The largest eddies have wavelengths on the 
order of the shear-layer width; e.g., the thickness of a boundary 
layer or the radius of a pipe. Most of the turbulent transport 
(mixing of mass, momentum, etc.) is not small-scale mixing, 
which might reasonably be modeled by a gradient-diffusion pro- 
cess, but bulk convection by the larger eddies, very roughly, those 
whose wavelength is more than a tenth of the shear-layer width 
or a tenth of the distance from the surface, whichever is smaller. 
The end of the process is dissipation of the kinetic energy of the 
smallest eddies into thermal internal energy by the action of 
fluctuating viscous stresses. The size of the smallest eddies de- 
creases as the viscosity decreases (strictly, as the Reynolds num- 
ber increases). The rate of kinetic energy transfer down the 
cascade to the smallest eddies is set by the large eddies, because 
they control the rate at which smaller eddies are stretched. Thus, 
small eddies do not have much effect on large ones, which 
considerably simplifies our problems in several respects. In par- 
ticular, turbulent mixing is almost independent of viscosity, ex- 
cept close to a solid surface-- the "viscous wall region" where all 
the eddies are "small." Furthermore, mixing is unaffected even 
by departures of the fluid constitutive relation from the simple 
Newtonian viscous-stress law, provided that non-Newtonian ef- 
fects are confined to the smallest scales, and this makes the 
development of subgrid-scale models for large-eddy simulations 
much less critical (see the Large-eddy simulation section). The 
smaller the viscosity (strictly, the larger the Reynolds number) 
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the smaller the dissipating eddies are compared to the large, 
energy-containing eddies. That is, turbulence is not only 3-D and 
time-dependent but covers a large and continuous range of 
wavelengths. 

Direct numerical simulation 

The correct way to treat the "turbulence problem" is, of course, 
to solve the 3-D time-dependent Navier-Stokes (N-S) equations, 
which are almost universally believed to give an adequately exact 
description of turbulence in simple fluids. Today, we call this 
direct numerical simulation (DNS). The numerical problem, as 
such, is not too severe, but a finite-difference domain must cover 
the full width of the turbulent region (e.g., the thickness of a 
boundary layer) with a greater extent in the other two coordinate 
directions, while the mesh size must be small enough to resolve 
the smallest eddies. Millions of finite-difference points or spec- 
tral modes are needed even at modest laboratory Reynolds 
numbers, and calculations for such large engineering structures 
as aircraft or turbines are impossibly expensive at present. 
Therefore, DNS is at present only a basic research tool, supple- 
ment ing--and beginning to compete with--experiments. How- 
ever, any other approach to the turbulence problem is inexact; 
that is to say, a cheap answer to expensive problems. 

Large-eddy simulation 

Direct numerical simulation was a pipe dream 25 years ago, but 
meterologists had already begun what we now call "large-eddy 
simulation" (LES, Deardorff 1971). Here, we take advantage of 
the fact that most of the transport of momentum or thermal 
energy is carried out by the larger eddies. The small eddies are 
little affected by the boundary conditions of the flow, or, as 
Stewart (1969) put it in his excellent movie, "they don't know 
which way is up." In scientific language, they are very nearly 
isotropic, statistically speaking. Also, they are weak and con- 
tribute little to turbulent transport. This is why viscosity has little 
effect on turbulent mixing away from solid boundaries. We may, 
therefore, hope that an LES numerical calculation scheme, in 
which the large eddies are resolved by the finite-difference grid, 
and the small, statistically simpler subgrid-scale (SGS) eddies are 
modeled fairly simply, will give predictions almost as good as 
DNS, but at much less computing cost. This hope is being 
realised, although slowly. Large-eddy simulation is a rather crude 
simplification of the problem: cutting off the spectrum at an 
arbitrary wavelength (related to the finite-difference grid scale), 
where we change from full resolution to modeling, is likely to 
leave part of an eddy in the resolved motion and part in the SGS 
region, because a turbulent eddy is not a simple Fourier mode. 
(There is no exact definition of an "eddy": think of it as a region 
of correlated motion, as seen in say, a flow-visualization movie, 
and note that large eddies can contain smaller ones.) Another 
difficulty is that, as mentioned above, all the eddies near a solid 
surface are small, and they are also strongly anisotropic. Thus, 
either the SGS model must be good enough to deal with the full 
range of eddy sizes near the surface, or the grid size must be 
greatly reduced. The latter choice increases computer storage 
and calculation time, thus destroying much of the advantage of 
LES over DNS. 

The first and simplest model for the SGS motion was that of 
Smagorinsky (1963). He assumed that the apparent turbulent 
stresses in the SGS motion are proportional to the square of the 
rate of strain in the resolved motion: his model is usually 
referred to as an eddy-viscosity model (the concept of eddy- 
viscosity is discussed below), but it is more akin to a mixing-length 
model. Note that most of the contributions to fluctuating velocity 
gradients, vorticity, and rate of strain come from the small 
eddies, so that the rate of strain in the resolved motion is 

determined mainly by eddies with wavelengths near the cutoff, 
which are likely to control the SGS motion. Now, DNS results 
can be used to test SGS models (admittedly only at low bulk 
Reynolds number); for example, fine-grid DNS data can be used 
to evaluate the constant of proportionality in Smagorinsky's 
model, or equivalently, the SGS eddy-viscosity, by calculating the 
actual SGS stresses and resolved-motion strain rate for a typical 
(coarse) LES grid. This produces values that vary wildy in space 
and time, but taking a time average, say, produces a smooth, and 
often fairly small, spatial variation. Unfortunately, different val- 
ues of the "constant" are needed in different flows, and the lack 
of improvements to the Smagorinsky model led to a decline in 
research interest in LES in the 1980s in favor of DNS. Fortu- 
nately, new models have begun to appear. 

The fluctuations in the DNS evaluations of SGS eddy-viscos- 
ity at, say, a given point in space are large enough to produce 
negative values at some times. This indicates--independently of 
the details of the SGS model- - that  the SGS motion is not 
dissipating energy locally but feeding it back to the resolved 
motion. This phenomenon is called "backscatter": it is a conse- 
quence of the fact that vortex lines (see the Basic physics of 
turbulence section) are not stretched monotonically but some- 
times contract. 

The most promising of the recent SGS models is the dynamic 
model of Germano, in which the eddy-viscosity of the SGS 
motion is related to the apparent eddy-viscosity of the smallest 
resolved eddies: in the original form of the model, the appear- 
ance of negative eddy-viscosity leads to numerical instability, but 
Ghosal et al. (1995) describe the most recent version, in which a 
transport equation is resolved for the SGS kinetic energy and 
used to cut off the backscatter at a given point when the SGS 
kinetic energy at that point falls to zero. 

Reynolds-averaged models 

Even LES currently costs more than engineering companies are 
willing to pay for routine calculations, and, of course, engineers 
do not want a complete output of all three instantaneous velocity 
components and the instantaneous pressure as functions of x, y, 
z, and t: they only want the statistics, and usually only the very 
basic statistics, at that. This brings us to the really sweeping 
simplification of Reynolds averaging. We suppose for simplicity 
that the average is a time average or "mean": this is a special 
case, but by far the most common one. Information is lost by 
averaging and must be replaced by one or more equations with 
empirical coefficients. "Leading" coefficients are the basic ones, 
such as the eddy-viscosity coefficient c~ in the two-equation k -e  
model: the adjective is needed, because the leading coefficients 
are sometimes made functions of, e.g., the ratio of the rate of 
production of turbulent kinetic energy to its rate of dissipation, 
and, of course, the subsidiary coefficients of such a function must 
be constant for the function to be incorporated into a computer 
code to be run without human intervention. Reynolds averaging 
throws away so much information that it is generally, although 
not universally, accepted that no model based on Reynolds-aver- 
aged equations can ever give predictions to acceptable engineering 
accuracy, over the full range of flows of interest, with constant 
values for the leading empirical coefficients in the model. The 
empirical coefficients must be obtained from experimental data 
or simulation results, either by direct measurement or by trial- 
and-error adjustment to optimise the model predictions for the 
flows of interest. A recent technique that seems to avoid the 
constraint in the last sentence is the use of renormalization 
group theory (RNG: see, e.g., Nakamur and Sakya 1995, who 
discuss the use of RNG-based models to predict transition). 
Renormalization group theory analysis nominally deduces the 
behavior of the large eddies from that of the smaller ones using 
the scale-similarity inherent in the energy cascade (see the Basic 
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physics of the turbulence),  but scale similarity does not  extend to 
the range of (large) eddy size that  carries the Reynolds stresses. 
The R N G  analysis involves choosing a "small" parameter  to be 
larger than unity (equal to 4 in one version at least), which seems 
questionable. Renormalizat ion group theory produces the right 
form of the terms in, say, one of the two-equation models, but 
this is essentially dimensional analysis, and it is not clear where 
the proper  physics enters the process. However, good results 
have been obtained. 

Note that  by "acceptable engineering accuracy" we mean 
"accurate enough for design a n d / o r  performance prediction of 
aircraft, turbines, and other  critical engineering devices" imply- 
ing errors of not more than a very few percentage points in such 
quantities as skin friction and shear-layer growth rate. Less 
accurate predictions may still be a useful guides, provided that  
the error can be estimated; however, in the present state of 
modeling, unexpectedly large errors can show up in flows differ- 
ent from those for which the model has been calibrated. 

Reynolds averaging, as is well known, results in equations for 
the mean velocity and temperature  fields that are the same as in 
steady laminar flow, with the addition of gradients of extra 
apparent  stresses or heat fluxes representing the extra transport  
of momentum or thermal energy by the turbulence. The label 
"stress" for what is really a rate of momentum transfer is an 
inexact one, but, of course, its use is no more inexact in turbu- 
lence than in the kinetic theory of gases, where momentum 
transfer by molecular collisions corresponds, in the macroscopic 
view, to what we call viscous stresses. Further  manipulat ion of 
the N-S  transport  equations for ( instantaneous) momentum leads 
to transport  equations for the Reynolds stresses, shown in Equa- 
tion A1 (they are partial differential equations whose left-hand 
sides are the t ime-averaged substantial derivatives of the compo- 
nents of the Reynolds stress tensor, just as the left-hand sides of 
the three N-S  equations are the instantaneous substantial 
derivatives of the components  of instantaneous velocity or mo- 
mentum).  The right-hand sides contain further unknown statisti- 
cal quantities, but the first group of terms contains no new 
quantities: this is the so-called generation of Reynolds stress by 
the effect of the mean-flow distortion on the existing turbulence 
and is a sum of products of Reynolds stresses and mean velocity 
gradients. The form of the generation terms shows that the mean 
velocity gradients influence the rate of change of Reynolds stress 
along a mean streamline but do not set its local value. This 
means that  local-equilibrium concepts taken over from such 
kinetic theory of gases as the concept of eddy-viscosity are very 
restricted in their application to turbulence. 

In almost all parts of a turbulent  flow, turbulent  (Reynolds) 
stresses or heat  fluxes are far larger than the viscous/conductive 
transport  rates, the exception being the above-mentioned 
"viscous wall region" very close to a solid surface. Velocity 
fluctuations and, thus, turbulent  stresses are zero at the surface 
because of the no-sl ip/no-permeabi l i ty  conditions. As a related 
but slightly different point, the turbulent  stresses are nearly 
independent  of viscosity (recall that the smallest, viscous-depen- 
dent eddies do not affect the larger, stress-carrying ones). This 
independence of viscosity and conductivity greatly simplifies the 
task of modeling the stresses and heat  flux rates. 

"Modeling,"  in the present context, means replacing the 
higher-order unknowns in Reynolds-averaged equations with 
functions of the dependent  variables of the equations, so as to 
achieve a closed set of equations (number  of unknowns equal to 
number  of equations). Details vary greatly: one constraint that  
must be obeyed is that mean velocities should appear  in the 
modeled terms only as gradients, because the appearance of the 
velocities themselves would make the model depend upon the 
frame of reference. Equations for turbulent  stresses or flux rates 
are then solved together with equations for the mean velocity 

Understanding and prediction of turbulent flow." P. Bradshaw 

field. The last sentence immediately suggests the hope of a direct 
connection between the Reynolds stresses and the mean velocity 
(necessarily the first or higher spatial derivative of the mean 
velocity, for the sake of Galilean invariance) a n d / o r  between the 
turbulent  heat-flux rate and mean temperature  gradient. If we 
suppose that the stress is proportional to the mean rate of strain, 
we have invented eddy-viscosity, and there is an analogous 
"eddy-conductivity." They are not properties of the fluid: they 
change, in a complicated fashion, from flow-to-flow and from 
place-to-place in a given flow. The ratio of a turbulent  stress to 
the rate of strain in the same plane can always be defined, and, 
of course, measured, so that the eddy-viscosity v T defined by 

- -  " i " J = I )  T O X-~j -~X i ] - -  - 3  ~ i j u  l 
(1) 

is a respectable quantity. It has the disadvantage of going to 
infinity, if the rate of strain is zero, and the stress is not; and, less 
obviously, there is no reason why it should be a scalar, the same 
for all choices of i and j. Almost all turbulence models that use 
an eddy-viscosity assume that  it is a scalar ("isotropic"), and, 
indeed, it is difficult to define an anisotropic eddy-viscosity 
without relating it to special directions defined by the boundary 
conditions (e.g., "spanwise" and "streamwise" components),  
which is usually incorrect, because it violates the principle of 
rotational invariance (changing the axes should not change the 
equations). 

It is important  to note that eddy-viscosity is the ratio of a 
turbulence quantity to a mean flow quantity, and we should not 
expect it to follow the scales of the mean flow exclusively, nor 
those of the turbulence. Nevertheless, current eddy-viscosity 
models fall into two main types. The first type includes the 
so-called "algebraic" models that relate the eddy-viscosity to 
mean-flow parameters,  a classic example being the correlation 
v r = 0.0168U~* for the outer  region of a boundary layer (Cebeci 
and Smith 1974). Algebraic eddy-viscosity models are a simple 
and cheap choice for not too demanding flows and can often 
outperform more sophisticated models in boundary layers in 
pressure gradient. The second type of eddy-viscosity model in- 
cludes " two-equat ion" models, in which partial differential equa- 
tions are solved for two statistical-average scales of the turbulent 
motion. The absence of mean-flow scales means that such mod- 
els can be applied to any geometry (accuracy, of course, is not 
guaranteed). 

The two-turbulence scales of a two-equation model are a 
velocity scale (almost always the square root of the turbulent  
kinetic energy per unit mass k =-u~/2) and another  quantity 
yielding a length scale of the energy-containing eddies; the 
eddy-viscosity is then taken as some numerical coefficient times 
the product of the two scales. Note that all models, whether  of 
the eddy-viscosity type or not, need a length scale or time scale 
as well as a velocity scale, because the terms in the transport  
equation for a variable Q, say, have dimensions of Q / t i m e  or 
Q × (velocity/length).  Of course, a time scale can be combined 
with a velocity scale to give a length scale, and it is usually 
simpler to discuss the latter. The most popular two-equation 
model is the k - e  model attributable to Jones and Launder  (1972; 
see Equations A3 and A4), in which e, the rate of dissipation of 
turbulent  kinetic energy per unit mass k, yields a length scale 
k3/Z/e.  The eddy-viscosity v T defined by Equation 1 is then 
given by c~,kZ/e where c ,  is an empirical coefficient. (Note that 
the definitions of typical length and velocity scales need not 
involve numerical factors: the latter appear in the modeled 
terms, as in the case of %,  which is typically taken as 0.09). An 
exact t ransport  equation for e can be derived from the 
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Navier-Stokes equations, but it contains many complex terms, 
and the dissipation equations used in current models must be 
regarded as completely empirical. 

A third type of eddy-viscosity model is the "one-equat ion" 
model, which solves a partial derivative equation (PDE) for v T 
directly. It still needs a length scale. The first model of this type 
was that  of Nee and Kovasznay (1968) but it contained the 
shear-layer thickness as a length scale and thus was not indepen- 
dent of flow geometry. Interest in one-equation models has 
revived recently, and the model of Spalart and Allmaras (1994), 
in particular, seems to be at least as good as two-equation 
models in some flows. 

In principle, a bet ter  method of predicting Reynolds stresses, 
which does not rely on the eddy-viscosity concept, is the "stress- 
transport  model"  or "second-moment  closure." Here the exact 
Reynolds stress transport  equations are modeled term by term. 
The result is a set of PDEs for the Reynolds stresses, to be 
solved with the Reynolds-averaged momentum equations and 
continuity equation. Ei ther  the exact equations or the models 
show that the mean rate of strain (strictly, the various mean 
velocity gradients) helps to determine the rate of  change of each 
Reynolds stress, but not directly the magnitude of the stress. It is 
now clear why eddy-viscosity is a bad variable to use for empiri- 
cal correlations: it assumes a direct connection between stress 
and rate of strain. A major term to be modeled in each stress 
equation is the mean product of the pressure fluctuation with the 
rate-of-strain fluctuation in the same place as the stress: this 
"pressure-strain" or "redistr ibution" term cannot be measured 
reliably, and data from simulations are limited, but as this is a 
major term, it can be deduced reasonably accurately as the net 
sum of all other  terms in the stress equation (e.g., Schwarz and 
Bradshaw 1994). Stress-transport models still need a length scale, 
usually supplied by the same kind of PDE as that used in 
two-equation eddy-viscosity models. As in two-equation models, 
the most popular choice is a PDE for e. 

Stress-transport models have not fulfilled their promise of 25 
years ago (e.g., Hanjalic and Launder  (1972)) despite a consider- 
able amount  of ref inement  over this period, and their superiority 
over two-equation models is sometimes significant, sometimes 
not: opinions are divided as to whether  the fault is mainly that of 
the dissipation equation or of the pressure-strain model. Stress- 
transport  models take longer to run than two-equation models, 
but numerical reliability of both has been improved over the last 
10 years or so by reformulating models to ensure "realizability" 
(i.e., no negative mean-square intensities or dissipation rates). 
Another  requirement that some models have been modified to 
satisfy is correct limiting behavior at a solid surface, where the 
turbulence is strongly affected by viscosity; however, it is a 
matter  of opinion whether  this should constrain the whole model, 
as used in the main part of the flow where viscous effects on the 
Reynolds stresses are negligible, or simply be incorporated in the 
"low-Reynolds number"  version used in the viscous wall region. 

"Algebraic stress models" are a simplification of stress-trans- 
port models and emerge as two-equation models with an 
anisotropic eddy-viscosity. The assumptions needed are sweeping. 
In particular, it is assumed that the left-hand sides of the stress- 
transport equations (i.e., the "mean  transport  terms") are pro- 
portional to the stress being transported, so that all can be 
obtained from a solution of, say, the turbulent kinetic energy 
equation, in the following form: 

Dt ~ -  
(1.2) 

It is easy to show that this assumption is poor in flows where the 
mean strain rate changes rapidly, and, of course, this is just the 
kind of flow where we need something bet ter  than a straight 

eddy-viscosity model. A similar assumption is used to relate the 
turbulent transport  of each Reynolds stress to the turbulent 
transport  ("diffusion") and Fu et al. (1988) have shown that this, 
too, is unsatisfactory where turbulent transport is la rge- - for  
example, near the edge of a free shear layer. It now seems that 
algebraic stress models are not a substantial improvement over 
two-equation models. 

A basic question in calibrating models of any level of com- 
plexity is the range of flows over which the model can be 
expected to be reliable. For example, one of the key coefficients 
in the transport equation for dissipation (or other "length-scale" 
quantity) can be obtained from the experimentally obtained law 
of decay of isotropic turbulence. To do this and then apply the 
model to shear layers implies the assumption that the key coeffi- 
cient is actually the same in isotropic turbulence and in shear 
layers. This is likely to be an inaccurate assumption, because 
properties such as spectrum shape and higher-order moments of 
the fluctuations are very different in the two types of flow. 

As has been implied in several places above, another  basic 
question is how to treat the boundary condition at a solid 
surface, or more specifically, how to treat the viscous wall region. 
In this region, the coefficients in the model can in pr inc ip le - -and  
generally do in prac t ice- -become functions of a Reynolds num- 
ber based on the local velocity and length scales of the turbu- 
lence, adding further empiricism to the model. Over a wide range 
of attached flows, the near-wall region is nearly universal: in the 
case of the mean velocity this is the well-known "law of the wall." 
This justifies making the coefficients functions of the local turbu- 
lence Reynolds number,  independent  of the type of flow. How- 
ever, evidence is accumulating (e.g., Bradshaw and Huang 1995) 
that law-of-the-wall arguments can break down quite seriously in 
flows that we would not normally think of as complex. In particu- 
lar, the range of validity of the law of the wall for temperature is 
very smal l - - i t  fails spectacularly in boundary layers in pressure 
gradient- -which is disquieting, because the arguments used to 
derive the law of the wall for temperature are closely analogous 
to those used for velocity. This is a serious matter, because 
model predictions for wall flows depend strongly on the accuracy 
of t reatment  of the viscous wall region. Launder  and Tselepi- 
dakis (1991) de-emphasise the role of the turbulence Reynolds 
number,  and it seems likely that  the main effect of the wall may 
come from the no-permeability condition rather  than the no-slip 
(viscous) condition. 

Two-equation or stress-transport models become very stiff, 
numerically, near the wall. The stiffness can be reduced by 
specifying the length scale and integrating a PDE for the velocity 
scale k only ("one-equation modeling," see Rodi et al. 1993). 
There seems to be no detectable reduction in accuracy. 

It is possible to avoid introducing Reynolds number-depen-  
dent coefficients by satisfying the "surface" boundary condition 
some distance outside the viscous wall region but still within the 
range of validity of the law of the wall. However, this still 
depends on near-wall universality, is probably accurate over a 
smaller range of flows than integrating down to the wall, and is 
complicated numerically. 

The various types of turbulence models are discussed in more 
detail in two recent references (NASA 1995; Bradshaw 1996). 

Types of turbulent f low 

Because turbulence is a dissipative phenomenon,  most flows that 
survive long enough to be of interest to engineers or planetary 
scientists have an energy input to the turbulent motion. One 
example is production of turbulent kinetic energy by buoyancy 
effects, at the rate g p ' v / p  per unit mass, where v is the 
velocity fluctuation in the upward vertical y direction, and p and 
9' are the mean and fluctuating parts of the density. Negative 
values of p't~ (transfer of potential energy to the turbulence) are 
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usually associated with positive Op/Oy (heavy fluid above light 
f lu id--an unstable situation) and conversely. An obvious case is 
the atmosphere, where warming of the air near ground heated by 
the sun leads to instability and the generation of "thermal" 
updrafts and corresponding downdrafts. Buoyant convection can 
take place without a mean flow in the horizontal direction. 

The most common kind of turbulent flow in engineering is 
one dominated by one or more shear layers (the family name for 
boundary layers, wakes, jets, etc.). Supposing that the mean flow 
is in or near the x-direction and is independent of the lateral 
coordinate z (the special case of a "two-dimensional thin shear 
layer"), the rate of transfer of kinetic energy per unit mass from 
the mean flow to the turbulence is - uvOU/Oy. Note that - puv 
is the shear stress in the x-y  plane so that the energy transfer 
rate per unit volume is (stress) × (rate of  strain), which is a rate of 
doing work (a factor of 2, resulting from tensor summation, has 
been glossed over here). In real life, shear layers are often 3-D 
(dependent on z as well as x and y), curved in the x-y  or y - z  
plane, or affected by adjacent turbulence fields, body forces, 
passage through a shock wave, and other imposed perturbations. 
Nevertheless, these perturbed or "complex" shear layers usually 
dominate the flow: they are an ongoing subject for experiments 
and an ongoing difficulty for prediction methods. If the perturba- 
tion can be described simply (e.g., by the radius of a curved shear 
layer), extra empirical terms can be added to a prediction method 
to account for it: many modelers feel that this is undesirable and 
that, to be reliable, a model should reproduce complex-flow 
effects naturally. 

However, even the most advanced models seem unable to 
predict the effects of streamline curvature in the x-y  plane (an 
extra mean-velocity gradient OV/Ox) without extra curvature-de- 
pendent terms, and the same seems to be true of other kinds of 
perturbation in the form of additional mean-velocity gradients. 
The direct numerical simulations of Coleman et al. (1996) show 
that even OU/Ox; i.e., longitudinal pressure gradient, signifi- 
cantly affects turbulence structure. Mean pressure gradients do 
not directly affect turbulence, at least in incompressible flow, and 
the usual view (expressed, e.g., by Bradshaw 1994) is that there is 
little evidence for indirect effects via OU/Ox. However, the 
effects are somewhat difficult to see in experiments on flows in 
pressure gradients because of large streamwise rates of change in 
the flow as a whole: this is a good example of the value of 
idealised simulations. 

A very common perturbation imposed on a shear layer is the 
addition of three-dimensionality to the mean flow (Bradshaw 
1987). A typical example is an initially 2-D boundary layer 
encountering a pressure gradient in the lateral z direction, 
leading to nonzero W and nonzero OW/Oy (even in inviscid flow, 
lateral skewing of the mean velocity vector skews the vorticity 
vector away from the z-axis so the x-component vorticity OW/Oy 
- OV/Oz becomes nonzero). Conventional turbulence models do 
a poor job of predicting the development of the Reynolds stresses 
even in simple 3-D flows and do even worse in "slender" flows 
with strong three-dimensionality in a limited part of the cross 
section, such as flows in wing-body junctions or duct corners (the 
latter problem is discussed by Speziale et al. 1993). In summary, 
although most of the flows of interest are identifiable as mem- 
bers of the family of shear layers, they are usually significantly 
perturbed from the "textbook" shear layers, in a way that current 
turbulence models cannot predict reliably. 

Experiments 

Direct numerical simulation needs no empirical input (other 
than the principles of conservation of mass and momentum, and 
the viscous stress law, which combine to give the Navier-Stokes 
equations). Experimental data are not of much use in formulat- 
ing and testing SGS models for LES: only DNS results give the 
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detail required. The main role of experiments is the traditional 
one of providing information for developing and testing 
Reynolds-averaged models: we use the word "information" rather 
than data, because even an experiment that reveals only qualita- 
tive physics can help in the general formulation of a model, 
leaving the empirical constants to be determined from quantita- 
tive data. In recent years, the results of simulations, both DNS 
and LES, have become useful supplements to experimental data, 
although simulations are restricted to fairly simple geometries 
and low Reynolds numbers and are, therefore, more helpful in 
formulating a model than in providing general test cases. In the 
last 25 years, the appearance of laboratory computers for con- 
trolling an experiment and recording the data, and a number of 
new techniques mainly based on laser light sources, have greatly 
increased the range of measurements and the complexity of the 
flows that can be measured. 

It is difficult to review the advances in complex-flow measure- 
ments, but the reader may look at the description of any recent 
experiment and convince him or herself of the virtual impossibil- 
ity of acquiring such large volumes of data, and deriving compli- 
cated statistics, by manual control and analog processing. In the 
first 10 years or so of our quarter-century, computers were 
expensive facilities, centralized in the laboratory or the organiza- 
tion rather than dedicated to a single experiment, and digital 
data processing often required recording on analog magnetic 
tape with later transcription to digital storage. Today, inexpen- 
sive microcomputers are fast enough for most data-acquisition 
purposes, and data transfer to larger machines with, say, more 
advanced graphics facilities is straightforward. (A student of the 
author's recently gave a seminar on measurements in a 3-D 
complex flow, using the NASA Ames FAST graphics package to 
produce color contour plots of surface pressure and other vari- 
ables from data on a fine grid. An inattentive member of the 
audience asked if these were experiments or computations!) 

A notable development that began about 25 years ago 
(Kovasznay et al. 1969) is "conditional sampling," the accumula- 
tion of statistical averages only over those periods of time for 
which the flow satisfies some condition chosen by the experi- 
menter. A simple example is an "intermittent average" near the 
irregular free-stream edge of a turbulent flow, which is accumu- 
lated only over the periods for which the flow at the measure- 
ment point is turbulent. This can be done quite easily using 
either analog or (more commonly today) digital data processing, 
although deciding on a criterion for "turbulent" can be nontriv- 
ial: strictly speaking, we should measure the magnitude of the 
fluctuating vorticity and label the flow turbulent when it is 
nonzero (not counting zero crossings); however, in practice, less 
rigorous criteria are used. If the Prandtl number of the fluid is 
close enough to unity, heat can be introduced into the turbulent 
flow, and the edge of the heated fluid (detectable with a fast-re- 
sponse thermocouple or resistance thermometer) will coincide 
with the edge of the turbulent fluid. Introduction of heat to mark 
only part of the turbulent flow, e.g., one of a pair of merging 
shear layers or a shear layer embedded in free-stream turbu- 
lence, can also be informative (e.g., Hancock and Bradshaw 
1989). 

Conditional sampling of simulation data is somewhat easier 
than experimental work, because complete information about the 
flow is available. Perhaps the most impressive example of this is 
the work of Robinson (1991). An important example in the 
present context of heat transfer is the little-known work of 
Guezennec et al. (1990) and Stretch et al. (1990) whose analysis 
of DNS results for a heated channel flow showed that the 
ejections or "bursts" of heated fluid from the viscous wall region 
were much more slender than the ejections seen in the velocity 
field. The reason is simply that pressure fluctuations affect the 
velocity field, but in a low-speed f low--not  the temperature field. 
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Presumably the ejections of vorticity (also unaffected by pressure 
fluctuations) resemble the hot-fluid ejection rather than the 
velocity patterns. These differences between the mechanisms of 
heat transfer and momentum transfer make it very surprising 
that the turbulent Prandtl number (ratio of turbulent momentum 
diffusivity to turbulent heat diffusivity) is close to unity, about 
0.9, in the inner layer of a simple wall flow. Reynolds analogy 
does not bear inspecting too closely! Note that the constancy of 
turbulent Prandtl number in the inner layer follows from law-of- 
the-wall arguments, which should apply to the temperature field 
as well as the velocity field, although, in fact, they seem to be 
valid only in a very simple flows (Kays 1994; Bradshaw and 
Huang 1995). However, these arguments do not imply that the 
constant value of turbulent Prandtl number must be near unity. 

A great deal of attention has been devoted, in the last 20 
years or so, to coherent structures. These are eddies that have an 
unusually long lifetime, and so the class depends on our concept 
of "unusual." The paper that created the wave of interest was 
that of Brown and Roshko (1974), showing the persistence of 
quasi-two-dimensional structures (vortex rolls) in mixing layers. 
After a search for similarly coherent structures in other kinds of 
flow, it became clear that the mixing layer is a rather special 
case: the presence of a point of inflexion in the mean velocity 
profile allows the eigenmodes of Kelvin-Helmholtz instability to 
persist, even against a background of small-scale turbulence. 
Wakes (with two points of inflexion) apparently have less pro- 
nounced coherent structures, while the vortex rings that are the 
eigenmodes of an annular mixing layer break up into conven- 
tional 3-D turbulence as the mixing layer spreads to form a jet. 
More or less by definition, if an eddy persists for a time much 
longer than the natural time scale k - e  (i.e., the time that the 
existing rate of dissipation would take to reduce the existing 
turbulent kinetic energy to zero), then that eddy is not fully a 
part of the turbulent energy cascade (see the Basic physics of 
turbulence section). Although there is still some dispute, it 
appears that the cores of the vortex rolls in a mixing layer are in 
nearly solid-body rotation without much turbulent activity. The 
present consensus is that the orderly structures in flows other 
than mixing layers are simply the large eddies of characteristic 
statistical-average shape first discussed by Townsend (1956). The 
large eddies carry much of the turbulent kinetic energy and shear 
stress, and their lifetime is no more than a few times k-e.  There 
have been several attemps to represent turbulent flows with a 
combination of deterministic large eddies and background 
isotropic turbulence. It seems that this combination is too crude 
to yield results of engineering accuracy, but see Goldshtik and 
Hussain (1995) for an interesting development in the special case 
of mixing layers. The other contributions of coherent-structure 
research to the development of prediction methods have, sad to 
say, been few and disappointing. 

Among the techniques for turbulence measurement that have 
come into widespread use over the last 25 years are the laser- 
Doppler velocimeter (LDV) and particle image velocimetry (PIV). 
There are variants of each. Useful references for LDV are the 
old but still valid reviews of Durst et al. (1976) and Buchhave et 
al. (1979) and the discussion of errors by Gould and Loseke 
(1993). Lourenco and Krothapalli (1995) discuss PIV errors. 

The advantage of the LDV over, say, the hot wire is that no 
solid probe need be inserted into the flow. Effects of a probe on 
the flow, or of a hostile fluid on the probe, are eliminated. The 
disadvantage is the cost, certainly an order of magnitude more 
than a hot-wire system to do the same job. The simplest explana- 
tion of the LDV is that if two coherent beams of light intersect, 
then planar interference fringes will be formed, and the intensity 
of light reflected by a particle passing through the intersection 
volume will fluctuate. The fluctuation frequency is equal to the 
particle's velocity component normal to the planes of the fringes, 

divided by the fringe spacing. If the signal from a photomultiplier 
viewing the particle is put through a frequency-to-amplitude 
conversion system--the simplest example being the demodulator 
used in FM radios--a  voltage proportional to the velocity com- 
ponent is obtained. "Seeding" the flow with particles is an art: it 
is not always possible to achieve a particle density large enough 
to give a continuous FM signal but not so large that the com- 
bined signal smears out the (random phase) fluctuations. Statis- 
tics that do not involve the time domain can be obtained from 
rare particle crossings, but, in this case, nonuniform or localized 
injection can lead to permanent correlation between particle 
number density and the flow near the injection point, thus 
biasing the results. A given beam pair can measure only the 
velocity component in the plane of the beams and normal to the 
axis of symmetry: to measure three components requires three 
beam pairs, of different colors so that the three signals can be 
distinguished. 

The basic principle of PIV is to seed the flow completely with 
particles and then to store the image of two or more short-dura- 
tion pulses of a light sheet intersecting the flow. The distance a 
particle image travels between the pulses is proportional to its 
velocity in the plane of the light sheet, so that two velocity 
components can be recovered from each particle in the plane, 
again without interfering with the flow. Usually the pulses are 
chosen to be of unequal length, -., or unequal spacing ..-, so that 
the sign of the velocity along the displacement vector can be 
deduced. Image processing is (computer) time-intensive, and care 
is needed to avoid spurious results caused by confusion between 
adjacent particles and particles that do not stay within the 
thickness of the light sheet for the full duration of the pulse 
train. Also, the results need to be interpolated on to a uniform 
grid for practical use, and, of course, many images are needed to 
get well-converged statistical averages. Useful review of the state 
of fluid measurement techniques as of 1988 are given in the 
books edited by Gad-el-Hak (1989a, b), especially the former. 

The present state of Reynolds-averaged models 

Wilcox (1993) contains a general review of turbulence models, 
concentrating mainly on two-equation models. 

Algebraic eddy-viscosity "zero-equation" models (containing 
no PDEs), and the even older "integral" methods solving ordi- 
nary differential equations for momentum thickness, shape pa- 
rameter, etc., are suitable only for simple attached boundary 
layers and have not been developed much in the last 25 years. An 
exception is the algebraic eddy-viscosity model of Baldwin and 
Lomax (1977), which is essentially the same as that of Cebeci and 
Smith (1974, section 1.4) with the displacement thickness re- 
placed by a length scale that is well behaved even if the edge of 
the boundary layer is ill-defined because of nonzero OU/Oy in 
the external stream. However it is fair to say that if aU/ay does 
not go substantially to zero at the edge of the boundary layer, 
then the boundary-layer approximation (which is implicit in the 
model equations) is suspect. The Baldwin-Lomax model is ex- 
tremely robust numerically; i.e., seldom breaks down. An unfor- 
tunate consequence is that it has ben applied (not by its origina- 
tors) to cases such as highly 3-D flows, which are far beyond the 
range of validity of the algebraic eddy-viscosity correlation and 
for which no adequate experimental data exist to check the 
predictions. 

Of the one-equation models (PDE for eddy-viscosity), the 
Spalart-Allmaras model seems to be superior to that of Baldwin 
and Barth (1990). The latter was derived as a simplification of 
the two-equations k - e  model; whereas, the former was con- 
structed empirically by a building-block approach, starting with 
simple cases and then adding complications. The building-block 
approach does rely on the empirical coefficients in the model 
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keeping the same optimum values for the full range of flows, but 
is evidently a way of making the best use of available data. 
Spalart and Allmaras (1994) refer to the one-equation model of 
Secundov and colleagues, which began as a refinement of the 
original empirical Nee-Kovasznay (1969) model, to avoid explicit 
use of the shear-layer thickness as a length scale, but is a 
precursor of Baldwin-Barth and Spalart-Allmaras. It seems that 
one-equation models will always be limited by the lack of an 
explicit length-scale equation. A geometry-independent model 
can be formulated by- - in  effect--obtains the length scale from 
the ratio of v r to the rate of strain, which has dimensions 
(length2). Spalart and Allmaras' (1994) use of the mean vorticity, 
rather than the mean strain rate, to provide a time scale for the 
turbulence has the advantage that the time scale does not change 
rapidly when the streamline curvature in the x-y  plane changes. 
As with most other models, Spalart and Allmaras' does not 
reproduce the suppression of turbulent mixing in the core of a 
longitudinal vortex (Dacles-Mariani et al. 1995) and, in general, 
seems to need an extra term to represent curvature effects. 

The two-equation k - e  model was originally from Jones and 
Launder (1972), but the empirical constants in common use are 
those recommended by Launder and Sharma (1974). Model 
Equations A3 and A4 are solved for k and e to give the 
eddy-viscosity. 

v T = c~k2/e  (2) 

It gives results that are of at least semi quantitative use to 
engineers over a wide range of flows. It is well behaved numeri- 
cally except for stiffness in the near-wall region; this necessitates 
small x-steps if the integration is carried all the way to the wall 
rather than being matched to a "wall function" (logarithmic law 
or otherwise) somewhere outside the viscous wall region, k - e  is 
notoriously unsatisfactory for the apparently simple case of 
boundary layers in adverse pressure gradients, which even alge- 
braic eddy-viscosity methods can handle quite well. As with most 
other models, k - e  is calibrated to reproduce the logarithmic law 
(strictly speaking, the mixing-length formula) in the inner layer of 
a wall flow, and the worst errors seem to occur just outside the 
inner layer. The modeling required in the k (turbulent kinetic 
energy) equation, A2, is minor, confined to the turbulent trans- 
port term (see Equation A3), so the main suspicion falls on the 
eddy-viscosity formula--with some doubts about the dissipation 
equation. S. F. Birch (private communication 1995) points out 
that the k - e  is tuned to deliver the best possible result for 
co k 2 / e  as required by the eddy-viscosity formula, so that com- 
parisons between experiments and predictions of k and e sepa- 
rately may be misleading; for example, a too-low choice for c~ 
could be compensated by a too-low prediction of e. 

k - e  is a member of the general family of k, k"'e" equations 
(m = 0, n = 1). The k, to model (m = - 1, n = 1) of Wilcox (1993) 
seems to give better results in many cases, including boundary 
layers in adverse pressure gradient and compressible flows but is 
excessively sensitive to the free-stream values of k and to ct e / k .  
Menter (1992) produced a hybrid model that used k and to in the 
inner part of a wall flow, but k and e in the outer part. Cazalbou 
et al. (1994) showed that the k - e  model happens to be rather 
insensitive to the choice of free-stream boundary values. 

Apart from seeking the optimum m and n, the main mileage 
left in two-equation models lies in making the coefficients, no- 
tably c~ in Equation 2, functions of dimensionless quantities 
parameterizing special effects. The most obvious "special effect" 
is that of viscosity, and the original Jones-Launder  model incor- 
porated low-Reynolds number modifications right from the start. 
The relevant Reynolds number is k2/(ev) ,  which is roughly 
proportional to y+, and if the flow is fully turbulent, the modifi- 
cations become active only in the viscous wall region. There is 
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controversy about the ability of turbulence models, of any kind, 
to predict transition (where k2 / (ev )  is also low). Results of at 
least qualitative value can be obtained for so-called 
"breakthrough" transition under highly turbulent streams, and 
for reverse transition ("relaminarization") but models calibrated 
in fully turbulent flow can hardly be expected to reproduce the 
growth of initially infinitesimal disturbances such as 
Tollmien-Schlichting waves. 

Other special effects that have been allowed for by parame- 
terizing c~ include streamline curvature, or rotation, in the x-y  
plane. In the case of rotation about a spanwise axis with angular 
frequency II, the simplest relevant dimensionless parameter is 
l q / ( e / k ) ,  replaced by ( U / R ) / ( e / k )  in the case of curvature, and 
empirical correlations for the effects of these parameters on c~ 
have been quite successful. Stress-transport models (and alge- 
braic stress models) have exact terms that include curvature and 
other mean-velocity gradients additional to the simple shear 
OU/3y, but the effect of these terms on the predicted stresses is 
generally too small by an order of magnitude. When longitudinal 
curvature changes, the turbulence structure is slow to respond, so 
correlating curvature effects on a local parameter may be unreal- 
istic. A more refined approach is to modify the coefficients in the 
transport equations for k a n d / o r  e, but there is no consensus on 
how to do this. 

The prototype of present day transport-equation models is 
the thin shear-layer model of Hanjalic and Launder (1972), 
extended to general flows by Launder et al. (1975) and known as 
the LRR model. The exact stress-transport equations are A5, 
with the definitions A6 and A7, for up to six independent 
Reynolds stresses - puiui. They are modeled term by term using 
a model dissipation transport equation (Equation A8), which is 
essentially the same as in the k - e  model. The major terms in the 
Reynolds-stress transport equation for - u i u  j are the "genera- 
tion" terms --('ffiuIOUj/o3Xl+UjUIIOUi/OXI), and the pressure- 

strain "redistribution" terms p'(Oui/Ox j + OuJOxi)/p,  which 
usually have the opposite sign to the generation. Because the 
dependent variables in the model include the Reynolds stresses 
and mean velocity, the generation terms can be left in exact 
form, but the pressure-strain terms (and some turbulent-trans- 
port terms that are generally smaller) must be modeled. 

Much of the effort expended on stress-transport models in 
the last 25 years has related to the pressure-strain terms. The 
exact Poisson equation that describes the pressure fluctuations in 
turbulent flow has a right-hand side consisting of two sorts of 
terms, one of which contains the mean velocity gradients. This 
surprising result, that a fluctuating quantity depends directly on a 
mean quantity, is just the result of Reynolds averaging and does 
not imply unexpected physics. However, it does imply that mod- 
els for the pressure-strain term should also have two parts, the 
"rapid" part corresponding to the Poisson term containing mean 
velocity gradients, and the "slow" part depending only on 
Reynolds-averaged turbulence quantities. (The names are slightly 
confusing and arise from the response to an idealized case where 
the mean velocity gradient changes rapidly: the "rapid" part of 
the pressure-strain term changes at once, the "slow" part more 
slowly. In more conventional flows, the two parts respond at 
roughly the same rate.) In unsheared homogeneous flows, only 
the slow part of the pressure-strain term appears and controls 
the return of the turbulence to isotropy (shear-stress components 
zero, normal stresses equal). Early models assumed that the slow 
term was linearly proportional to the anisotropy; e.g., propor- 
tional to - u i u  j if - u i u  j is a shear stress, i ~ j .  More recently, 
nonlinear models have been proposed (see the tests by Schwarz 
and Bradshaw 1994 and the model of Chung and Kim 1995). The 
"rapid" part of the pressure-strain term directly opposes the 
generation, and in the case of rapid distortion of initially isotropic 
turbulence (sudden application of a very large strain rate), an 
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exact result shows that the rapid pressure-strain term is just 
( - 3 / 5 )  times the generation term. Now if the empirical coeffi- 
cient in the model of the rapid pressure-strain term is the same 
in rapid distortion and in conventional shear layers, the coeffi- 
cient follows from the exact result. Once again, it is an open 
question whether a given model with given coefficients actually 
applies over a wide range of flows. 

The original LRR model for the rapid pressure-strain term 
was linear in the Reynolds stresses and the mean velocity gradi- 
ents, but, again, nonlinear models have been proposed more 
recently, partly to ensure realizability and proper limiting behav- 
ior at a solid surface (see the section). A significant recent 
development is the elliptic relaxation model of Durbin (1993), in 
which the pressure fluctuation and the pressure-strain term at a 
given point are affected by flow properties at all other points. 
Conventional models parameterize the pressure-strain term at a 
given point using only the velocity-field statistics at that point, 
which is clearly incorrect in view of the elliptic nature of the 
Poisson equation for the pressure. 

The chief virtue of stress-transport models is that they do not 
use an eddy-viscosity relation between the Reynolds stresses and 
the components of the mean rates of strain. However, it is 
common to use a gradient-transport model for the turbulent 
transport terms. For example, OUiUjUl/OX l represents the turbu- 
lent transport of uiuj in the x I direction, and UiUjU l is assumed 
to be proportional to -OUiUj/OX I. The constant of proportional- 
ity is an eddy-diffusivity that could be taken as c ,  k Z / ( e g ) - - s i m  - 
ply the eddy-viscosity from the k - e  model with an additional 
factor g, which is adjusted to optimise the results. (In practice, a 
slightly more sophisticated and rotationally invariant model is 
used.) Obviously, the retention of eddy diffusivity is an embar- 
rassment, and Huang et al. (1994) showed that particular difficul- 
ties occur in compressible flow where O~/Ox i appears, but alter- 
native models for turbulent transport have not been very success- 
ful, and it is rare for errors in the gradient transport model to 
have a large effect on the flow. 

A few closures at higher level than the Reynolds stresses have 
been tried, but without clear improvement. Two-point closures, 
using transport equations for the spatial covariance ui(x)ui (x  + r) 
between points at x and (x + r), become excessively complicated 
in inhomogeneous flows. A recent departure is the model of 
Reynolds and Kassinos (1995), using additional equations for 
turbulence structure (which is not adequately described by the 
Reynolds stresses and one-scalar length scale). It appears that 
stress-transport models, possibly with refinements such as those 
of Reynolds and Kassinos, will continue to be the most advanced 
type of Reynolds-averaged prediction method for the foreseeable 
future. 

Stress-transport models are more difficult and expensive to 
run than eddy-viscosity models, because the indirectness of the 
coupling between the mean flow and the turbulence increases 
the stiffness of the system. Various workshops and other projects 
intended to find the most accurate type of model (e.g., Bradshaw 
et al. 1996) have not produced clear evidence in favor of stress- 
transport models. In many flows, they give significantly better 
results than do eddy-viscosity models, and, being closer to the 
physics, they are better vehicles for empirical allowances for 
special effects. However, performance in some complex flows is 
just as bad as eddy-viscosity models, and the likelihood of numer- 
ical singularity or near-singularity is greater. At present, there- 
fore, most industrial companies stick to two-equation models, 
generally k-e ,  despite their known shortcomings. 

Conclusions 

In 25 years, DNS and LES have become major players in turbu- 
lence research, and industrial use of LES for design purposes 

cannot be too far off. Also, there have been considerable ad- 
vances in measurement techniques and in digital data acquisition 
and processing. On the other hand, the turbulence models in 
common use are rather modest refinements of those available in 
1972. There are signs of real progress in modeling, but industry 
still awaits a model that is both reliable and cheap. 
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Appendix: Exact and model transport equations 

The main equations all have the same form: the left-hand side is 
transport by the mean flow (substantial derivative), and the first 
term on the right is generation of the transported quantity by the 
influence of the mean flow. Succeeding lines show the pressure- 
strain term (individual Reynolds-stress transport equations only), 
the turbulent diffusion by velocity and pressure fluctuations, and 
the viscous destruction and diffusion. For simplicity, we consider 
only constant-property flow and use the symbol p, with fluctua- 
tion p ' ,  for (pressure)/(density). 

If we multiply the xj-component N-S  equation by u i, add it 
to uj times the xi-component equation, and take Reynolds 
average (usually a time average) we get the Reynolds-stress 
transport equation for uiu j. Strictly speaking, the Reynolds-stress 
acting in the xi-direction on a plane normal to the x j-direction is 
- p u i u  j, but in the case of constant-property flow considered 
here, the difference is trivial. We have: 

U~Ou.uj/Oxt = - (uTa4a~/ax~ + ujulOUi/Oxt) 

+ p'(c~ui/Ox j + OuJ?,x i) 

OUiUjUl//OXI -- c~pf~i/OXj -- Op u~/Ox, 

+ P(UiO2Uj//O"2l q- .jO2Ui//c)X2 ) (A1) 

A special case, obtained by putting j = i and dividing by 2, is 
the transport equation for turbulent kinetic energy per unit mass, 
u2/2: 

m 

UtO(uZ/2)/Oxt = uiutOUi/Ox t 

- O ( - ~ t  + u 2 u J 2 ) / O x z  

q- r,UiO2Ui/OX~ (m2)  

The terms on the right can be rigorously interpreted as 
energy transfer from the mean flow to the turbulence (turbulent 
energy "production"), spatial transport of turbulent energy 
(known by the overworked word "diffusion"), and--splitting up 
the viscous term energy transfer from the turbulence to ther- 
mal internal energy (viscous "dissipation"), and viscous transport 
of turbulent energy (again, negligible except in the viscous wall 
region or other situations where the local Reynolds number is 
low, so that the last term in Equation A2 can usually be replaced 
by -e) .  Individual Reynolds-stress transport equations do not 
have this rigorous thermodynamic interpretation, but the general 
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processes of generation, turbulent transport, and destruction are 
the same. Note that the pressure-strain redistribution term 
p'(Oui/Ox ) + Ouy/Ox i) disappears from the TKE equation be- 
cause Oui/Ox j = 0 for j = i, by continuity. 

The exact transport equation for the simplified "homoge- 

neous" dissipation v ( O u J O x )  2, which is almost always an ade- 
quate approximation to the more complicated expression for the 
true dissipation, is still itself very complicated. The model equa- 
tions bear so little resemblance to the exact equation that they 
should be thought of as purely empirical equations representing 
the usual processes of transport by the mean flow, generation by 
interaction with the mean flow, transport by the turbulence, and 
destruction by viscous stresses or pressure fluctuations. 

The current version of the Jones-Launder  k - e  model used 
by Launder's group at the University of Manchester, UK is: 

B 

Model equation for k =- u2/2  

Ok 3U~ 
= 

+ ox ,L=, ax, j 
(A3) 

Model equation for 8 

ae  e aui  

v,-ff,x, = 

axt [ cr~ axl j - c ~ - k -  
(A4) 

Given k and e, the eddy-viscosity follows from Equation 2. 
Numerical values are c~ = 0.09, GI = 1.45, c~2 = 1.92, Ck = 1.0, 

tr~ = 1.3. These values apply only at large local Reynolds number 
Re r = k2/(ev) .  

The Laundcr-Reece-Rodi (1975) transport-equation model 
for high local Reynolds number k2 / (v8 )  (without later improve- 
ments) is: 

Model equation for UiU j 

~ m  
OUiU 1 

3x t 
Uibl l -  

aX, + ) +% 

2 

3 gij• 
(A.S) 

where the pressure-strain "redistribution" term qbij is modeled 
as fDij I + (~ij2, with 

I_ 2]  f~ijl k u i u  j - -~Sijk (A6) 

[ [ _ _  0v/] 1 0v, ] 
f~ij2 =C2[ ~UiUI~x 1 + UjUI~x l J -- - -~i ,421lAm-- | 3 tgx m ] 

(A7) 

The model equation for 8 uses a diffusivity CeUlttm(k/8) in 
the turbulent transport term; this is a slight improvement on the 
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(c~/tr~)(k 2/8)  used in the k - e  method. The dissipation equation 
is otherwise identical to that of the k - e  method: 

Oe 8 OU i 

+ Ox t 
CeUlUm ~. 

8 2 

-- Ce2-- ~ (A8) 

Numerical values are c I = 1.8, c 2 =0.6 (i.e., 3/5),  c s =0.22, 
c~ = 1.45, c~2 = 1.92, G = 0.18. For a general 3-D flow, eleven 
PDEs-- including the four mean-flow equat ions- -must  be solved, 
compared to six for the k - e  method. 
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